my positive point for my life is.....To be hopeful in bad times is not just foolishly romantic. It

my positive point for my life is.....To be hopeful in bad times is not just foolishly romantic. It
my positive point for my life is.....To be hopeful in bad times is not just foolishly romantic. It is based on the fact that human history is a history not only of cruelty, but also of compassion, sacrifice, courage, kindness. What we choose to emphasize in this complex history will determine our lives. If we see only the worst, it destroys our capacity to do something. If we remember those times and places -- and there are so many -- where people have behaved magnificently, this gives us the energy to act, and at least the possibility of sending this spinning top of a world in a different direction.

Saturday, March 24, 2012

What is Microbiology


Microbiology
is the study of microscopic organisms, which are defined as any living organism that is either a single cell (unicellular), a cell cluster, or has no cells at all (acellular).[1] This includes eukaryotes, such as fungi and protists, and prokaryotes. Viruses[2] and prions, though not strictly classed as living organisms, are also studied. Microbiology typically includes the study of the immune system, or Immunology. Generally, immune systems interact with pathogenic microbes; these two disciplines often intersect which is why many colleges offer a paired degree such as "Microbiology and Immunology".
Microbiology is a broad term which includes virology, mycology, parasitology, bacteriology, immunology and other branches. A microbiologist is a specialist in microbiology and these related topics.

Microbiological procedures usually must be aseptic, and use a variety of tools such as light microscopes with a combination of stains and dyes.The most commonly used stains are called basic dyes, and are composed of positively charged molecules. Two types of basic dyes are simple stains and differential stains. simple stains consist of one dye and identify the shape and multicell arrangement of bacteria. Methylene blue, carbolfuchsin, safranin, and crystal violet are some of the most commonly used stains. Differential stains on the other hand, use two or more dyes and help us to distinguish between two or more organisms or two or different parts of the organism. Types of differential stains are gram, Ziehl-Neelsen acid fast, negative, flagella, and endospore. Specific constraints apply to particular fields of microbiology, such as parasitology, which heavily utilizes the light microscopy, whereas microscopy's utility in bacteriology is limited due to the similarity is many cells physiology. Indeed, most means of differentiating bacteria is based on growth or biochemical reactions. Virology has very little need for light microscopes, relying on almost entirely molecular means. Mycology relies on all technologies the most evenly, from macroscopy to molecular techniques.
Microbiology is actively researched, and the field is advancing continuously. It is estimated that only about one percent of the microorganisms present in a given environmental sample are culturable[3] and the number of bacterial cells and species on Earth is still not possible to be determined, recent estimates indicate that it can be extremely high (5 Exp 30 cells on Earth, unknown number of species). Although microbes were directly observed over three hundred years ago, the precise determination, quantitation and description of its functions is far to be complete, given the overwhelming diversity detected by genetic and culture-independent means.

History
Ancient time: The existence of microorganisms was hypothesized for many centuries before their actual discovery. The existence of unseen microbiological life was postulated by Jainism which is based on Mahavira’s teachings as early as 6th century BCE.[4] Paul Dundas notes that Mahavira asserted existence of unseen microbiological creatures living in earth, water, air and fire.[5] Jain scriptures also describe nigodas which are sub-microscopic creatures living in large clusters and having a very short life and are said to pervade each and every part of the universe, even in tissues of plants and flesh of animals.[6] The Roman Marcus Terentius Varro made references to microbes when he warned against locating a homestead in the vicinity of swamps "because there are bred certain minute creatures which cannot be seen by the eyes, which float in the air and enter the body through the mouth and nose and there by cause serious diseases.

Modern :

In 1676, Anton van Leeuwenhoek observed bacteria and other microorganisms, using a single-lens microscope of his own design. While Van Leeuwenhoek is often cited as the first to observe microbes, Robert Hooke made the first recorded microscopic observation, of the fruiting bodies of molds, in 1665. The first observation of microbes using a microscope is generally credited to the Dutch draper and haberdasher, Antonie van Leeuwenhoek, who lived for most of his life in Delft, Holland. It has, however, been suggested that a Jesuit priest called Athanasius Kircher was the first to observe micro-organisms. He was among the first to design magic lanterns for projection purposes, so he must have been well acquainted with the properties of lenses.[10] One of his book contains a chapter in Latin, which reads in translation – ‘Concerning the wonderful structure of things in nature, investigated by Microscope. Here, he wrote ‘who would believe that vinegar and milk abound with an innumerable multitude of worms.’ He also noted that putrid material is full of innumerable creeping animalcule. These observations antedate Robert Hooke’s Micrographia by nearly 20 years and were published some 29 years before van Leeuwenhoek saw protozoa and 37 years before he described having seen bacteria.

The field of bacteriology (later a subdiscipline of microbiology) was founded in the 19th century by Ferdinand Cohn, a botanist whose studies on algae and photosynthetic bacteria led him to describe several bacteria including Bacillus and Beggiatoa. Cohn was also the first to formulate a scheme for the taxonomic classification of bacteria and discover spores. Louis Pasteur and Robert Koch were contemporaries of Cohn’s and are often considered to be the father of microbiology and medical microbiology, respectively. Pasteur is most famous for his series of experiments designed to disprove the then widely held theory of spontaneous generation, thereby solidifying microbiology’s identity as a biological science. Pasteur also designed methods for food preservation (pasteurization) and vaccines against several diseases such as anthrax, fowl cholera and rabies. Koch is best known for his contributions to the germ theory of disease, proving that specific diseases were caused by specific pathogenic micro-organisms. He developed a series of criteria that have become known as the Koch's postulates. Koch was one of the first scientists to focus on the isolation of bacteria in pure culture resulting in his description of several novel bacteria including Mycobacterium tuberculosis, the causative agent of tuberculosis

While Pasteur and Koch are often considered the founders of microbiology, their work did not accurately reflect the true diversity of the microbial world because of their exclusive focus on micro-organisms having direct medical relevance. It was not until the late 19th century and the work of Martinus Beijerinck and Sergei Winogradsky, the founders of general microbiology (an older term encompassing aspects of microbial physiology, diversity and ecology), that the true breadth of microbiology was revealed. Beijerinck made two major contributions to microbiology: the discovery of viruses and the development of enrichment culture techniques. While his work on the Tobacco Mosaic Virus established the basic principles of virology, it was his development of enrichment culturing that had the most immediate impact on microbiology by allowing for the cultivation of a wide range of microbes with wildly different physiologies. Winogradsky was the first to develop the concept of chemolithotrophy and to thereby reveal the essential role played by micro-organisms in geochemical processes. He was responsible for the first isolation and description of both nitrifying and nitrogen-fixing bacteria.

Branches

The branches of microbiology can be classified into pure and applied sciences.[16] Microbiology can be also classified based on taxonomy, in the cases of bacteriology, mycology, protozoology, and phycology. There is considerable overlap between the specific branches of microbiology with each other and with other disciplines.

Taxonomic arrangement

Bacteriology: The study of bacteria.

Mycology: The study of fungi.

Protozoology: The study of protozoa.

Phycology (or algology): The study of algae.

Parasitology: The study of parasites.

Immunology: The study of the immune system.

Virology: The study of the viruses.

Nematology:The study of the nematodes

Next [art i will post in next blog.